Effect of N-alkyl and N-alkenyl substituents in noroxymorphindole, 17-substituted-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7:2',3'-indolomorphinans, on opioid receptor affinity, selectivity, and efficacy

J Med Chem. 2001 Apr 26;44(9):1471-4. doi: 10.1021/jm000511w.

Abstract

The N-alkyl analogues (N-ethyl through N-heptyl), branched N-alkyl chain analogues (N-isopropyl, N-2-methylpropyl, and N-3-methylbutyl), and N-alkenyl analogues ((E)-N-3-methylallyl (crotyl), N-2-methylallyl, and N-3,3-dimethylallyl) were prepared in the noroxymorphindole series (17-substituted-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7:2',3'-indolomorphinans), and the effect of the N-substituent on opioid receptor affinity, selectivity, and efficacy was examined using receptor binding assays, [(35)S]GTPgammaS efficacy determinations, and smooth muscle functional assays (electrically stimulated mouse vas deferens and guinea pig ileum). All of the compounds acted as opioid antagonists, including those with N-substituents which usually confer either weak agonist-antagonist behavior (N-ethyl) or potent opioid agonist activity (N-pentyl) in morphinan-like ligands which interact with the mu-receptor. Several N-substituted noroxymorphindoles were found to be more mu/delta-selective than naltrindole (NTI). The N-2-methylallylnoroxymorphindole, in particular, was found to be more selective than NTI in receptor binding assays (mu/delta = 1700 vs 120; kappa/delta = 810 vs 140), as an antagonist in the GTPgammaS assay (mu/delta = 170 vs 140; kappa/delta = 620 vs 160), and considerably more selective than NTI in the functional assays (mu/delta > 2200 vs 90). It also had high affinity for the delta-opioid receptor (K(i) = 4.7 nM in the binding assay) and high antagonist potency (1.2 nM in the GTPgammaS assay; 8.9 nM in the MVD assay).

MeSH terms

  • Animals
  • Binding, Competitive
  • Electric Stimulation
  • Guanosine 5'-O-(3-Thiotriphosphate) / metabolism
  • Guinea Pigs
  • Ileum / drug effects
  • Ileum / physiology
  • In Vitro Techniques
  • Male
  • Mice
  • Morphinans / chemical synthesis*
  • Morphinans / chemistry
  • Morphinans / metabolism
  • Morphinans / pharmacology
  • Muscle Contraction / drug effects
  • Muscle, Smooth / drug effects
  • Narcotic Antagonists
  • Radioligand Assay
  • Receptors, Opioid / metabolism*
  • Receptors, Opioid, delta / antagonists & inhibitors
  • Receptors, Opioid, delta / metabolism
  • Receptors, Opioid, kappa / antagonists & inhibitors
  • Receptors, Opioid, kappa / metabolism
  • Receptors, Opioid, mu / antagonists & inhibitors
  • Receptors, Opioid, mu / metabolism
  • Structure-Activity Relationship
  • Vas Deferens / drug effects
  • Vas Deferens / physiology

Substances

  • 17-(2-methyl-2-propenyl)-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7-2,3-indolomorphinan
  • Morphinans
  • Narcotic Antagonists
  • Receptors, Opioid
  • Receptors, Opioid, delta
  • Receptors, Opioid, kappa
  • Receptors, Opioid, mu
  • Guanosine 5'-O-(3-Thiotriphosphate)